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Abstract
Low power consumption or high execution speed is achieved by making an applica-

tion specific design. However, today’s systems also require flexibility in order to allow
running similar or updated applications (e.g. due to changing standards). Finding a
good trade-off between reconfigurability and performance is a challenge.

This work presents a design methodology to generate application-domain specific
heterogeneous coarse-grain reconfigurable architectures. The specification of the re-
configurable architecture is given by a set of example applications which define the
whole range of its required functionality. These applications are analyzed to extract
common building blocks, which can be reused between them.

In the next step, the circuits of the application are merged to a single reconfigurable
module. The major part of this work describes the according tool and its algorithm.
Its main task is to optimize the interconnect by hierarchically grouping the functional
units. Additional resources can be added to enable future applications. The tool gen-
erates the HDL source for a module with the instances of all blocks and the reconfig-
urable interconnect. The feasibility of the methodology is demonstrated by the design
of reconfigurable architectures for digital filters as well as simple logic networks.

Key words: Programmable Logic Devices, Reconfigurable Architectures, Reconfig-
urable Logic, Design Automation, Integrated Circuit Interconnections

1.1 Introduction

In current system design a shift to employ reconfigurable logic tries to utilize their
benefits for various applications. Typical wireless sensor network (WSN) nodes are
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supplied from batteries or utilize energy haversting. Therefore the main goal is to
optimize a WSN node for ultra low power consumption. Unfortunately, the CPU as
main controller consumes power even for very simple tasks. By adding a dedicated
reconfigurable hardware module to offload the CPU for such simple tasks as sensor
measurements or network MAC layer handling, a large reduction in the power con-
sumption can be achieved [1]. These reconfigurable modules also enable the use of the
SoC in multiple different environments, thus sharing the non-recurring engineering
(NRE) costs.

Accelerators for computer vision systems should support various algorithms. Cur-
rently this is achieved by implementing all algorithms in parallel and switching be-
tween them. Since the algorithms also have common operations, a reconfigurable sys-
tem can reduce the required hardware resources. In multi-standard and multi-function
communication systems the same approach leads to a reduction of hardware resources
[2].

Reconfigurable logic is classified by its granularity. The widely used FPGAs are
fine-grained and pose a large overhead in terms of area and power. This is avoided by
coarse-grained reconfigurable systems that achieve an ASIC-like performance at much
lower power consumption and chip area [3, 4]. For the above mentioned applications,
domain-specific reconfigurable circuits with heterogeneous, tailored blocks and a non-
regular interconnection can provide further reduction in power and area [5].

In this work, a methodology for the design of heterogeneous coarse-grain reconfig-
urable circuits is presented. From a set of different actual applications, the set of re-
quired (possibly reconfigurable) hardware blocks and the interconnect between them is
deduced. The grouping of the blocks is optimized to minimize the hardware resources
of the interconnect.

This work is an extended version of [6]. First we review the design and usage of
custom reconfigurable hardware. Then a detailed view on the design methodology is
given. This is followed by a review and evaluation of interconnect topologies. The
main part of this work is an optimization algorithm for the automatic synthesis of
this interconnect. Then a short section introduces a feature-rich Verilog synthesis tool
which is used for design entry of the presented methodology. This is followed by an
evaluation of the algorithm results. The work ends with conclusions and future work.

1.2 Development of Reconfigurable Hardware

The generation of reconfigurable circuits is split in two phases. In the so called “pre-
silicon phase” the reconfigurable hardware structures are designed for the application
class. Secondly, in the “post-silicon phase” the reconfigurable silicon circuit is used to
implement the actual application [7, 5].

In this work an approach is presented that provides the (semi-) automated gener-
ation of the pre-silicon circuit and can generate the configuration data for an actual
application in the post-silicon phase.
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1.2.1 Pre-Silicon Phase

In the pre-silicon phase, the reconfigurable circuit is designed. As first step, its spec-
ification is derived from the set of (usually similar) actual applications, which will
be implemented in the reconfigurable logic. During this design space exploration, the
“needs of [the] applications [...] drive the construction of the fabric” [3, p. 1]. This
approach requires the a-priori knowledge of all future applications and it is generally
not possible to implement a different application with the resulting fabric. To enable
yet unknown applications, we propose oversizing, i.e., to include additional hardware
and interconnect resources into the fabric.

The specification includes information on the employed blocks (also called func-
tional units or cells) (e.g. adders, FSMs, ...), which can be reconfigurable themselves
(e.g. an adder be reconfigured as a subtracter, reconfigurable FSM [8]). Additionally
it includes the number of instances of each block as well as details on the connections
among them.

1.2.2 Post-Silicon Phase

In the post-silicon phase after production the actual application has to be implemented
by configuring the silicon structure designed in the pre-silicon phase. So, on the one
hand, the post-silicon phase is limited by the results of the pre-silicon phase. On the
other hand, the pre-silicon phase requires information on the actual implementations
later used in the post-silicon phase to provide the required resources.

1.3 Design Methodology

The reconfigurable module as the result of the pre-silicon development phase will be
integrated into the whole SoC. Therefore the resulting design data has to be compatible
with an industry-standard ASIC design flow. This is best accomplished by delivering
the reconfigurable module as a soft IP core. The required deliverables include structural
and RTL (register-transfer level) hardware description (e.g., VHDL, Verilog) as well as
guidelines and constraints for synthesis and place and route. Additionally, information
and tools for the post-silicon phase have to be provided.

The design of such reconfigurable module soft IP cores should be assisted and au-
tomated by dedicated tools. This requires a systematic design approach which will be
described in this section.
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1.3.1 Specification

The start of the development requires a precise specification of the reconfigurable mod-
ule. The application class of the module only coarsely defines the functionality. How-
ever, the interfaces of the reconfigurable modules to other modules of the SoC and
outside the SoC can be derived. On the other hand, the functionality and inventory of
the reconfigurable module itself can be specified in two different ways:

1. Define the functionality and the required flexibility in abstract terms.
2. Use a set of concrete applications, which define the whole range of the required

functionality of the reconfigurable module.

This work only deals with the second form of specification. The design of a reconfig-
urable module is thus broken down to first developing a set of concrete applications.
Then, from this set one reconfigurable circuit is derived which is able to implement
each of these concrete applications.

The specification of each concrete, i.e., example application has to be easy to trans-
late to a logic netlist to facilitate further processing by automated tools. It should em-
ploy an existing type of hardware description so that the designers do not have to learn
a new one. Finally, the description should be supported by industry-standard verifica-
tion tools to achieve a first-time-right SoC design. All these requirements are fulfilled
by common hardware description languages like VHDL and Verilog.

1.3.2 Application Analysis

The first step of the development of a reconfigurable module is to develop and verify
a set of example applications (see “App”s in Fig. 1.1). In the second step, these are
processed to derive the inventory of the reconfigurable module. This consists of a pool
of coarse-grain cells (e.g., FSMs, adders, ...) (which might be reconfigurable them-
selves) plus a reconfigurable interconnect for flexible connections among them [5, 6]
(compare Fig. 1.3).

For the processing of the example applications, a special coarse-grain synthesis tool
creates a netlist representation of each application. These netlists are analyzed to ex-
tract coarse-grain cells and to find commonalities between all example applications
(see top “Synthesis” box in Fig. 1.1). Commonly used cells are candidates for reuse
in the reconfigurable module. Analogously to the FSM plus datapath (FSM+D) con-
cept, the control logic of each example application is mapped to an FSM using FSM
extraction while all data processing is implemented using dedicated coarse-grain cells.

While FSMs are very generic building blocks, which easily can be implemented
with a reconfigurable cell, e.g. as a TR-FSM [8], the development of a reconfigurable
datapath is a more complex task. At the beginning of the development, a mostly manual
approach is employed. The coarse-grain synthesis tool creates netlists with instances
of simple coarse-grain cells (e.g., adders, shifters, ...). The designer has to investigate
the schematic and manually identify related cells which together build a larger, more
complex coarse-grain cell (e.g., calculating the absolute difference of two numbers, a
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App 1 App 2 App 3
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Cell Extraction and Inference
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Constraints

Implementation

IP Core

Fig. 1.1: Graphical representation of the design methodology (description is given
in the text).

counter, ...). He can also generalize such groups to configurable multi-function cells
(e.g. an adder and subtracter or a whole ALU). Further more, using frequent subgraph
mining [2] allows to automatically identify sub-circuits which are common to multiple
example applications.

For each such coarse-grain cell a small module is designed (again in a HDL). These
together build the cell library (see Fig. 1.1). We call this semi-automatic procedure
“coarse-grain cell extraction”. It is the core point for optimization of the final recon-
figurable module.

When the cell library for the reconfigurable module is finished, all example ap-
plications are analyzed again with “coarse-grain cell inference”. This uses subgraph
isomorphism to identify and replace all sub-circuits in each example application by
coarse-grain cells from the cell library. For the further processing, each example ap-
plication has to be described by a netlist of only FSMs and instances of cells from the
cell library and connections among them (see “Netlist”s in Fig. 1.1).
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1.3.3 Merge

After the application analysis, all separate example applications are merged to a single
common reconfigurable module, which can implement each of the example applica-
tions (see Fig. 1.1). Therefore all used coarse-grain cells from the cell library including
reconfigurable FSMs have to be instantiated in the appropriate number. To increase the
flexibility of the final reconfigurable module, additional instances of critical cells can
be added. Finally, a flexible and reconfigurable interconnect is created and optimized.

The result of this step is an RTL representation of the reconfigurable module plus
meta-information for the post-silicon phase to specify how to setup the configuration
data.

1.3.4 Implementation

To complete the reconfigurable module, storage and interfaces for configuration and
parameterization are added (see Fig. 1.1). Together with guidelines and constraints for
synthesis and place and route, the reconfigurable module is provided as soft IP core. It
can be integrated into the whole SoC and processed with a standard ASIC design flow.

1.3.5 Verification

Verification is a major concern in ASIC development, therefore the described devel-
opment methodology provides full coverage from the example applications to the fin-
ished IP core. Firstly, the functionality of each example application (see “App”s in
Fig. 1.1) can be verified by simulation as well as formal verification due to the choice
of common HDLs for specification.

Secondly, the individual netlists created by coarse-grain cell inference can be
checked for equivalence to the original HDL. Since these netlists might already con-
tain reconfigurable cells (e.g., FSMs), the configuration values have to be set to the
proper values using according commands of the equivalence checking tools. The sim-
ulation of the netlist simply uses the original testbench but requires the application of
configuration values before start.

Finally, it is also possible to verify whether the final reconfigurable module im-
plements any given example application. Again, the according original testbench is
employed and the required configuration data has to be applied before the start of the
simulation. Additionally, equivalence checking can be employed to verify the logical
equivalence of the (appropriately configured) reconfigurable module to each example
application.
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1.3.6 Post-Silicon Phase

In the previous sub-sections, it was assumed that the configuration data for each exam-
ple application is generated together with the application analysis and merging steps.
Therefore no dedicated post-silicon phase is required for these applications. However,
for a new application a full post-silicon design phase is required. This is similar to
designing FPGA applications, although the results of the pre-silicon phase limit the
design space of these new applications.

In a first step, the new application is synthesized and coarse-grain cell inference is
performed. Then, similar to the merging step above, the netlist is mapped to the inven-
tory of the reconfigurable module and the signals are routed through the interconnect.
Finally, the configuration data is generated to setup the cells and the interconnect. The
result can be verified using simulation and equivalence checking.

1.3.7 Tools

The above described design methodology requires tools to assist the designer. For
the synthesis of the example applications, a flexible and customizable coarse-grain
synthesis tool is required. This will be described in short in Sec. 1.7. However, the
major part of this paper is on the tool to merge the netlists of the example applications
and generate and optimize the interconnect (Secs. 1.4–1.6).

1.4 Interconnect for Reconfigurable Modules

Most applications of coarse-grain reconfigurable logic are designed for computational
tasks [4]. These use an array of homogeneous functional units connected with a highly
regular interconnect (e.g. mesh structure), similar to FPGAs. In contrast, the presented
approach assumes heterogeneous functional units (cell types), which also require a
non-regular interconnect.

1.4.1 Common Topologies

Different interconnect topologies are evaluated in this section. The most powerful
topology provides connections from every output to all inputs. The disadvantages are
a large circuit overhead. On the other hand, a minimalistic interconnect with a small
number of multiplexers to switch between alternative datapaths (compare [2]) does not
allow to implement yet-unknown applications in the reconfigurable circuit.

Mesh structures are an alternative to the layered topology, but also assume homo-
geneous FUs that can be configured to perform each of its basic functionalities. The
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interconnect itself requires a high number of switches which pose a high overhead in
terms of silicon area and power.

In SoCs, a bus topology is used to connect the CPU with the memory and all pe-
ripherals. For reconfigurable logic circuits with all cells working in parallel, this leads
to high traffic and thus congestions [4]. The utilization of every cell is reduced and the
total processing time protracted, which is not acceptable in the domain of low-power
circuits.

A tree based interconnect topology [9] allows to group the cells to provide short
paths through lower levels of the tree for connections, which are used frequently by the
different applications. On the other hand, connections to other nodes are still possible
using higher hierarchical levels of the tree. This provides a large optimization potential
to reduce circuit overhead but still results in a rich set of routing resources.

1.4.2 A Tree Topology

For the implementation of the reconfigurable modules the tree topology was chosen
to connect the individual cells. First, a few terms have to be defined. The circuit is
built out of multiple cells, which are instances of various cell types (previously called
blocks, e.g. adder, FSM, look-up tables). Each has a number of input and output ports.

Analogous to the separation of the control logic and the data-path in the FSM+D
concept, each port of the cell types implements a connection type, e.g. bit-wide, word-
wide or other categories. The connection types are defined based on compatible sig-
naling (e.g. identical bit width) as well as semantics (e.g. clock enable vs. other control
signal).

All cells are connected using a reconfigurable interconnect. For every connection
type a separate interconnect is implemented (see Fig. 1.2) which provides connections
between all ports of its connection type.

Cell 1

Cell 2

Cell 3

...

Cell n

1× Bit-Wide
Interconnect

Tree

2×Word-Wide
Interconnect

Trees

Fig. 1.2: Example interconnect with two different interconnect types (bit-wide and
word-wide). The word-wide interconnect is implemented as two parallel trees.
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In the post-silicon phase an actual application is implemented by connecting the
cells as given by the netlist. This specifies nodes of certain cell types, which are
mapped to the cells of the reconfigurable circuit. The ports of these nodes are con-
nected with nets which are routed via the interconnect of the according connection
type by setting the proper configuration.
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Switch 2 Switch 3
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Fig. 1.3: Example interconnect with seven switches in three levels connecting nine
cells of varying cell types

The interconnect is a tree (see Fig. 1.3) with the cells as leaf nodes and reconfig-
urable switches as inner nodes as well as the edges as connections (electrical nets).

The switches are unidirectional circuits that can be configured to connect any input
port to any output port (see the detail in Fig. 1.3). The degree of a switch is the number
of its children, (e.g. in Fig. 1.3, Switch 3 has a degree of two, Switch 6 has a degree
of three). Each cell and each switch have a parent switch, except the top-most root
switch. The height of the tree is the number of levels (e.g., Fig. 1.3 has a height of
three).

The routing length of a net is the number of switches it passes from its source cell
to its destination cell. The total routing length is the sum for all nets of a given netlist.

Each non-root switch in the tree has a number of connections to and from its parent
switch. Only the number of these connections limits the capability of the interconnect
to implement different netlists. Each switch can drive all outputs from any input, with
one exception: A signal driven by one switch to another switch cannot be routed back
to its originating switch.

To improve the connectivity, for each connection type multiple parallel trees with
identical topology can be implemented (as also implemented by [10], compare Fig. 1.4
and the two word-wide interconnect trees on the right side in Fig. 1.2). Each cell is
assigned to a (generally different) leaf node in each tree. Therefore each net can be
routed in any tree. As each cell might be assigned to a different leaf node in each tree,
the routing length of a net can be small in one tree but high in the other trees.
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Fig. 1.4: Exemplary interconnect for the digital filters shown in Fig. 1.6 using two
parallel interconnect trees (top and bottom). The routed signal paths show the post-
silicon configuration for the biquad-df1 filter. In the pre-silicon phase, the intercon-
nect was optimized with the other three topologies. Note that the cells in the bottom
half are the same as the cells in the top half, but in a different order, because they
are mapped to different leaves in the second interconnect tree.

1.4.3 Analysis of the Tree Topology

In this section the tree topology as described in the previous section is evaluated. A
set of six requirements is presented and the fitness of the tree topology to meet this
requirements is analyzed.

1. Requirement: Allow random connections of the cells up to a certain degree.

The set of netlists that can be implemented by a given interconnect tree is only lim-
ited by the number of connections between the switches and their parent switches
and the tree layout (number of levels and degree of switches). An interconnect
with only one big root switch is equivalent to a full-MUX interconnect that can
implement any netlist. This might be useful for connection types with only a small
number of input or output ports.

2. Requirement: Allow optimization of the interconnect for recurring pattern and
similarities in the example netlists.

The interconnect can be optimized towards the similarities in the example netlists
by choosing cell to tree leaf mappings in a way that minimizes the interconnect
utilization of the example netlists.

3. Requirement: Can be characterized using a relative simple and regular data struc-
ture. The existence of such a representation allows for easy manipulation and in-
vestigation of the interconnect topology.

The whole interconnect can be described using only two simple data sets: Firstly
the mapping of each cell to one leaf in each tree and secondly for each switch
the number of connections to and from its parent switch. The first data set can
be charaterized as a per-tree permutation and can be manipulated and optimized
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easily by exchanging the assignments of two cells in one tree. The second data set
is a list of integers where greater value implies more flexibility in the post-silicon
phase, but also more chip resources.

4. Requirement: Prohibits over-optimization towards the example netlists that would
prevent the interconnect to work with netlists that have similarities with, but are
not identical to any, example netlist.

As whole cells (instead of individual ports) are mapped to tree leaves, the opti-
mization potential towards the individual datapaths is limited. There will always
be nets that cannot be routed by only using the lowest layer of the interconnect.
Thus, smart grouping of cells can be used to optimize, up to a certain degree, the
interconnect to the requirements of the example netlists. On the other hand, the
interconnect will not be limited to the example netlists.

5. Requirement: Allows for easy oversizing of the interconnect resources to broaden
the spectrum of implementable netlists.

Oversizing is done by increasing the number of connections between switches.
Netlists that are similar but not part of the set of example netlists might have nets
which result in a high routing length. With oversizing, extra routing resources help
to improve these cases.

6. Requirement: Easy to implement with currently available logic synthesis tools.

The interconnect topology provides only unidirectional links. This allows for an
implementation using MUXes built from standard cells, as generated by ASIC
synthesis tools. For the interconnect in most up-to-date FPGAs, unidirectional
links are also reconsidered [11].
An additional problem arises from potential combinational loops within the in-
terconnect circuitry. This is eliminated by forbidding to route a signal back to its
originating switch. On the other hand it is still possible to create loops through
combinational cells connected to the interconnect. This issue must be taken care
of by disabling timing arcs through these cells and applying maximum delay con-
straints [12].

In summary, the chosen tree topology seams to be well suited for heterogeneous
coarse-grain reconfigurable architectures.

1.5 Interconnect Synthesis

A tool called InterSynth, which automatically generates the interconnect for the recon-
figurable module, was implemented. It uses a set of example netlists (each representing
an actual application, compare Sec. 1.2.1) with instances of cell types and connections
among them. These are used to optimize the interconnect to provide cells and connec-
tivity, suitable for implementing any of these netlists. The output is a synthesizable
Verilog file that instantiates the cells and describes the reconfigurable interconnect.
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S← initial state

function KERNLINOPTIMIZE(S, P, T )
j← 1
S0← S
while P contains compatible pairs do

S j ← S j−1
(p1, p2)← best candidate pair from P
Swap T mapping of p1 and p2 in S j
Remove p1 and p2 from P
j← j+1

end while
S← best candidate from S0 . . . S j−1

end function

if mode_align_netlists then
repeat

Sold← S
for all N = example netlist do

P← set of all nodes in N
KERNLINOPTIMIZE(S, P, node_to_cell)

end for
until Sold = S

end if

for i = 1→max. interconnect levels do
if mode_swap_cell_mappings then

for all I = interconnects with min. i levels do
P← set of all leaves in I
KERNLINOPTIMIZE(S, P, cell_to_leaf)

end for
end if
if mode_swap_node_mappings then

for all N = example netlist do
P← set of all nodes in N
KERNLINOPTIMIZE(S, P, node_to_cell)

end for
end if

end for

Fig. 1.5: Intersynth Algroithm

In the pre-silicon phase, the algorithm first builds the interconnect topology with
the given number of parallel trees, height of the trees and order of each level. The
total number of leaves is given by the number of cells required by the example netlists.
Then the cells are assigned to leaves in the interconnect trees (cell-to-leaf-mapping)
and the required number of connections for each switch to and from its parent switch
are determined so that the connections of all example netlists can be routed. In that
course the algorithm also implements all example netlists. This means that for each
netlist, each node is mapped to a cell (node-to-cell-mapping) and each net is routed
via one of the interconnect trees.
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1.5.1 Optimization Algorithm

During the interconnect optimization, the cell-to-leaf-mappings are permuted, so that a
smaller number of connections to and from the parent switches (and therefore hardware
resources) is required to still implement all example netlists. This is preformed using
an iterative algorithm, a single iteration of which is shown in Fig. 1.5. It operates on
the state S, which contains all node-to-cell-mappings for all netlists and all cell-to-leaf-
mappings for all interconnect trees.

The optimization is based on the Kernighan-Lin algorithm [13], which is an heuris-
tic procedure for solving partitioning problems by permuting the domain mappings of
entities. In InterSynth it is used (in a slightly modified manner) to permute the node-
to-cell- and cell-to-leaf-mappings in the state S. The function KERNLINOPTIMIZE in
Fig. 1.5 implements the Kernighan-Lin algorithm.

For the first iteration of the algorithm a start state S with random mappings is used.
For all further iterations the result of the previous iteration is used as a starting point.
Experiments have shown that less than six iterations are usually enough for InterSynth
to reach a stable state, whereas further iterations don’t significantly improve the algo-
rithms result.

The algorithm is controlled through the use of flags that enable or disable certain
parts of the algorithm. Note that the KERNLINOPTIMIZE function is using different
optimization goals in different parts of the algorithm. For example the term best can-
didate pair in KERNLINOPTIMIZE is using a different definition of best depending
on the calling block. The flag mode_align_netlists enables a block that “aligns” the
netlists so that similar subcircuits are mapped to the same set of cells. In this block the
optimization goal for KERNLINOPTIMIZE is to minimize the number of unique pairs
of connected cell ports over all netlists. The flag mode_swap_cell_mappings enables
a block that permutes the cell-to-leaf-mappings for the individual interconnect trees
and the flag mode_swap_node_mappings permutes the node-to-cell-mappings. In both
blocks the optimization goal is to minimize the sum of the total routing lengths for all
netlists in the top i levels of the interconnect trees. Therefore the first iteration of the
i-loop only tries to reduce the utilization of the root switch and further iterations of the
i-loop refine this first solution with respect to the other switching levels in a top-down
manner.

For the pre-silicon procedure the algorithm is used with the flag mode_align_-
netlists enabled in the first iteration. Thus the actual algorithm is using aligned
netlists as a starting point. The flag mode_swap_cell_mappings is set for all iterations
and mode_swap_node_mappings is only set for the second half of iterations. Thus the
algorithm first tries to find a good solution without modifying the aligned netlists and
after that uses this solution as a starting point for an optimization run with all degrees
of freedom. After this the number of required connections for each switch to and from
its parent switch is calculated by using the maximum number of these connections
used for each switch in the routing results generated by the algorithm. InterSynth also
provides configuration options for oversizing.

In post-silicon runs the flag mode_align_netlists is never activated, as there is
only one netlist in post-silicon runs. The flag mode_swap_cell_mappings is also never
set during the post-silicon procedure, as the cell-to-leaf-mappings cannot be changed
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once the chip has been manufactured. The flag mode_swap_node_mappings is set in
all iterations of the post-silicon procedure. As information about the available routing
resources is available during the post-silicon procedure this information is used by
the post-silicon routing algorithm. Thus the post-silicon routing algorithm does not
optimize for the shortest path but for least congestion.

1.5.2 Implementation Details

The actual implementation of InterSynth is using performance optimizations. For ex-
ample, instead of copying S to S0, . . . ,S j−1, a journal of the swaps is maintained that
can be rolled back to the best solution. When the number of utilized nodes of a certain
type varies between the netlists, additional “dummy nodes” are added by InterSynth to
level the number of used nodes across all netlists. This is necessary as InterSynth can
only permute the existing cell-to-leaf-mappings. That means there must be mappings
for all leafs in all trees in the initial state in order to make all possible mappings ac-
cessible to the optimization algorithm. The cell type descriptions used by InterSynth
provide a flag to mark a cell input as possible feedback input. An input that does not
have this flag set cannot be connected directly to an output from the same cell. For
most cell types such connections would never be part of a valid netlist. The Verilog
HDL code generated by InterSynth can be used as-is in the final ASIC design as In-
terSynth can be configured to not only include the cell instantiations and interconnect
logic but also additional support code in the HDL output, such as connections of cell
ports to ports of the generated module (for input and output purposes or distributing
global signals such as clock and reset). It is also possible to embed configuration data
for reconfigurable cells (ALUs, etc.) within the InterSynth config bitstream. Inputs
and outputs of the whole reconfigurable modules are handled as special cell types and
therefore are not explicitly drawn in Fig. 1.2 and 1.3. The automatically generated
interconnect shown in Fig. 1.4 has only one input and one output labeled IN[0] and
OUT[0].

1.6 Evaluation of InterSynth

Two different application classes were used to evaluate InterSynth: digital filters (see
Sec. 1.6.1) and logic functions (see Sec. 1.6.2). For both an identical interconnect
configuration was used, which has two parallel trees of height three (although with
different connection types). The switches in the bottom two layers have a degree of
four and the top level (root) switch connects all switches of the second layer. In order
to create more flexible interconnects, an oversizing rule for one additional connection
to each switch to and from its parent switch was used.
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1.6.1 Filter Networks

Two instances of the four different digital filter topologies as shown in Fig. 1.6 were
concatenated in all 16 possible combinations to build netlists of higher-order filters.
The cell types employed are (word-wide) adders, multipliers and flip-flops. The Ver-
ilog code for this test cases can be found in Lst. 1.1.

Test 1) From the pool of 16 netlists a random sample of n was selected and used
for the pre-silicon phase to optimize the interconnect. Then the post-silicon phase was
attempted with each of the 16 netlists. This test was performed 1000 times each for
n ∈ {1, . . . , 6}. The percentage of failed post-silicon runs per post-silicon netlist and
number of pre-silicon netlists is shown in the center part of Tab. 1.1. It shows that
increasing the number of example netlists n in the pre-silicon phase results in less
failed attempts in the post-silicon phase. The average resource usage of the generated
interconnect is expressed with two figures: the number of bits of the configuration data
and the number of 2-to-1 MUXes (MUX2) required to build the interconnect. Both
numbers are normalized to the total number of cell ports. The bottom part of Tab. 1.1
gives their mean for n∈ {1, . . . , 6}. For the case of n= 1 pre-silicon netlist, the average
number of MUX2 and configuration bits is shown in the right part of the table for every
pre-silicon netlist.

The test also shows that post-silicon implementation of the topology fir4-df2.fir4-df2
fails in a significant fraction of the generated interconnects, especially for n≤ 2. This
can be explained by the differences in the fir4-df2 topology compared to the other
three topologies in Fig. 1.6: All multipliers in fir4-df2 are driven directly from the
input (which therefore has a fanout of five) and all delay outputs are connected to adder
inputs while in the other topologies delay outputs are connected to delay or multiplier
inputs. It is worth mentioning that fir4-df2.fir4-df2 does not require more routing
resources than the other topologies (see right part of Tab. 1.1). It only requires a dif-
ferent interconnect because it is composed of different patterns. Thus an interconnect
that can implement fir4-df2.fir4-df2 as well as the other 15 topologies needs more
resources than one that can only implement the 15 others.

fir4-df1 fir4-df2

biquad-df1 biquad-df2

Fig. 1.6: Filter topologies used as test netlists. Circles represent adders, squares
represent delays and triangles represent configurable constant factor multipliers.
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Number of Pre-Silicon Netlists Single
Topology 1 2 3 4 5 6 mux2 bits

biquad-df1.biquad-df1 2.4 % 0.1 % 0.0 % 0.0 % 0.0 % 0.0 % 5.74 4.07
biquad-df1.biquad-df2 1.8 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 5.80 4.08
biquad-df1.fir4-df1 2.9 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 5.75 4.07
biquad-df1.fir4-df2 2.5 % 0.1 % 0.0 % 0.0 % 0.0 % 0.0 % 5.85 4.11
biquad-df2.biquad-df1 2.2 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 5.81 4.11
biquad-df2.biquad-df2 0.8 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 5.73 4.06
biquad-df2.fir4-df1 3.5 % 0.1 % 0.0 % 0.0 % 0.0 % 0.0 % 5.77 4.08
biquad-df2.fir4-df2 3.0 % 0.1 % 0.0 % 0.0 % 0.0 % 0.0 % 5.80 4.11
fir4-df1.biquad-df1 13.4 % 0.5 % 0.0 % 0.0 % 0.0 % 0.0 % 5.88 4.13
fir4-df1.biquad-df2 3.4 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 5.77 4.06
fir4-df1.fir4-df1 14.7 % 0.4 % 0.0 % 0.0 % 0.0 % 0.0 % 5.86 4.11
fir4-df1.fir4-df2 4.1 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 5.85 4.12
fir4-df2.biquad-df1 6.0 % 0.0 % 0.0 % 0.1 % 0.0 % 0.0 % 5.86 4.13
fir4-df2.biquad-df2 1.7 % 0.1 % 0.0 % 0.0 % 0.0 % 0.0 % 5.77 4.08
fir4-df2.fir4-df1 4.4 % 0.2 % 0.0 % 0.1 % 0.0 % 0.0 % 5.83 4.10
fir4-df2.fir4-df2 34.5 % 6.2 % 1.6 % 0.5 % 0.2 % 0.3 % 5.86 4.13

avg. mux2 / port 5.82 7.15 8.24 9.40 10.31 11.04
avg. bits / port 4.10 4.61 5.01 5.43 5.76 6.01

Table 1.1: Filter Network Post-Silicon Errors and Resource Usage vs. Number of
Pre-Silicon Netlists

Degree of Interconnect Trees Degree of Interconnect Trees
2 3 4 5 6 2 3 4 5 6

#
of

Tr
ee

s 1 10.74 8.39 8.42 7.21 8.34 116 82 81 43 32
2 8.51 7.86 8.27 8.31 9.14 46 34 5 6 2
3 8.48 8.57 9.75 10.39 11.80 0 0 0 0 0
4 9.57 10.21 12.23 13.22 15.22 0 0 0 0 0

MUX2 / port Post-Silicon Errors / 1k

Table 1.2: Number of Trees and Degree of Switches vs. Interconnect Resource Us-
age and Post-Silicon Errors

Test 2) The resource usage of the pre-silicon results where compared to the re-
source usage of an interconnect with a random, i.e, unoptimized cell-to-leaf-mappings
(mode_swap_cell_mappings disabled in all iterations of the algorithm). The difference
in the resources needed for these two cases is an indicator of the optimization po-
tential utilized by InterSynth to optimize the interconnect for the application domain
described by the example netlists. When n = 4 pre-silicon netlists are used and no ad-
ditional routing resources are added, an average number of 3.0 (stddev 1.1) word-wide
MUX2 per cell port are required to implement the filter example. When the InterSynth
cell to leaf mapping is replaced with a random mapping and InterSynth is only used
for the node-to-cell-mappings, this number increases to 7.2 (stddev 0.6). This shows
that InterSynth can drastically optimize interconnects for scenarios like this one with
a relatively large number of cell types compared to the number of cells.
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Test 3) The number of parallel interconnect trees was varied from one to four and
the degree of the switches was varied from two (binary tree) to six. For each of these
interconnect configurations, two random pre-silicon netlists where used for optimiza-
tion. The average resource utilization (number of MUX2) for each configuration is
given in the left part of Tab. 1.2.

Each optimized interconnect was used for 1000 post-silicon netlists. The number
of errors (i.e. the post-silicon netlist could not be routed within the interconnect) is
shown in the right part of Tab. 1.2. For a single interconnect tree, even with a high
degree of switches, a large number of post-silicon errors are present. Two parallel
trees and a degree of four and above result in an acceptable number of post-silicon
errors. Therefore two parallel trees with switches of degree four are a trade-off with
resource utilization. More parallel trees result in a large increase of resource utilization
and might also result in a wiring congestion on chip in larger scenarios.

1.6.2 Logic Networks

Random logic functions with six inputs and one output were generated and ABC [14]
was used to convert these logic functions to netlists of inverters, two-input AND gates
and two-input XOR gates. Of course such a problem would be better solved by rather
using lookup tables than configurable interconnects and basic logic gates, but this is a
simple method for generating a virtually unlimited pool of “similar” large netlists. For
this test InterSynth was configured with oversizing rules to add 10 % plus 5 cells of
each kind to compensate for the variation in the cell usage in the generated netlists.

Test 1) For the pre-silicon phase, four random example netlists were used to opti-
mize the interconnect. The results from this pre-silicon phase were then tested using
1000 other random netlists (limited by the number of available cells) for the post-
silicon phase. This was performed 50 times. The post-silicon run failed in only 0.05 %
of these 50000 tests.

Test 2) An average number of 16.8 (stddev 0.8) MUX2 per cell port are required
to implement this testcase (with four pre-silicon netlists) regardless of the ques-
tion whether the cell-to-leaf-mapping was optimized or not (i.e, mode_swap_cell_-
mappings was enable or disabled). This shows that while it is possible to use Inter-
Synth for large homogeneous networks like this test case, it doesn’t have an advantage
over distributing the cells regularly.

1.7 Yosys

In order to provide a convinient way for design entry, a feature-rich HDL synthesis tool
with the name Yosys2 was implemented. Yosys is a generic Verilog synthesis tool3 that
can be used in a wide variety of application domains [15].

2 A left-recursive acronym for “Yosys Open Synthesis Suite”.
3 VHDL support is in development as of this writing.
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The Verilog code in Lst. 1.1 was used to create the InterSynth netlists for the filters
used in the evaluation presented in the last section. Additional input files for Yosys
include a small synthesis script and an additional Verilog file that describe how Yosys
should map the RTL constructs to the coarse grain cell library.

Besides simple HDL synthesis Yosys can be used for a wide range of advanced
analyzes and circuit transformations. It can extract FSMs and perform various opera-
tions on extracted FSMs, such as recoding and moving additional function from logic
networks into the FSM. In coarse-grain environments this can be used to move control
logic into a generic FSM cell, e.g. TR-FSM [8].

Yosys also supports technology mapping by finding subcircuit isomorphism, allow-
ing coarse-grain cells to implement richer logic function than the RTL cells used by
Yosys internally. Yosys also has limited support for frequent subcircuit mining, eas-
ing the identification of possible coarse-grain cell types during the pre-silicon design
phase.

1.8 Conclusion

A design methodology for application-domain specific heterogeneous coarse-grain re-
configurable logic architectures is presented. One or multiple such resulting reconfig-
urable modules are integrated into an SoC to off-load its CPU. This results in a large
reduction of power consumption. Contrary to FPGAs, a coarse-grain and heteroge-
neous architecture is used, which allows further reduction in power and area.

In the pre-silicon phase, the application class for the reconfigurable module is de-
fined and specified by several example applications. These are synthesized and an-
alyzed to extract common logic structures as coarse-grain cells (including reconfig-
urable FSMs) and to build a cell library. The example application circuits are trans-
formed to only instantiate such coarse-grain cells.

The major part of this work presents an algorithm to merge these example applica-
tion netlists to a single reconfigurable module. It optimizes a tree structured intercon-
nect and the selection of coarse-grain cells which are able to implement all example
applications. Spending additional hardware resources even allows to implement yet-
unknown applications with the resulting silicon.

The evaluation of the algorithm was performed using digital filter topologies. With
only two example netlists and slight oversizing in the pre-silicon phase, nearly all
other example netlists could be realized in the post-silicon phase. Additionally, a large
optimization potential to keep the hardware resources limited was demonstrated.

We propose improvements to InterSynth in the following areas: The routing algo-
rithm for the pre- and post-silicon phases can be improved, for example to support
routing of a single net in multiple trees.

The over-all optimization procedure can also be improved: As depicted in the right
part of Tab. 1.1, the hardware resources (MUX2) of the interconnect increase when
more pre-silicon netlists are used, even when all example netlists can be routed. A
consolidation step after the pre-silicon procedure would help reduce the hardware re-
sources in this cases.
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Listing 1.1: Verilog code for generating the filter netlists.
module filter(input clk, input [31:0] in, output reg [31:0] out);

parameter type = 0;
parameter k1 = 1, k2 = 2, k3 = 3, k4 = 4, k5 = 5;
reg [31:0] next_tmp [3:0], tmp [3:0];
integer i;
always @*

case (type)
0: begin // biquad-df1

next_tmp[0] <= in; next_tmp[1] <= tmp[0];
next_tmp[2] <= out; next_tmp[3] <= tmp[2];
out <= k1*in + k2*tmp[0] + k3*tmp[1] +

k4*tmp[2] + k5*tmp[3];
end
1: begin // biquad-df2

next_tmp[0] <= in + k1*tmp[0] + k2*tmp[1];
next_tmp[1] <= tmp[0];
out <= k3*in + k4*tmp[0] + k5*tmp[1];

end
2: begin // fir4-df1

for (i = 0; i < 4; i = i+1)
next_tmp[i] <= i > 0 ? tmp[i-1] : in;

out <= k1*in + k2*tmp[0] + k3*tmp[1] +
k4*tmp[2] + k5*tmp[3];

end
3: begin // fir4-df2

next_tmp[0] <= in*k1;
next_tmp[1] <= in*k2 + tmp[0];
next_tmp[2] <= in*k3 + tmp[1];
next_tmp[3] <= in*k4 + tmp[2];
out <= in*k5 + tmp[3];

end
endcase

always @(posedge clk)
for (i = 0; i < 4; i = i+1)

tmp[i] <= next_tmp[i];
endmodule

module filter2(input clk, input [31:0] in, output reg [31:0] out);
parameter type = 0;
wire [31:0] tmp;
filter #( .type(type % 4) ) F1 (.clk(clk), .in(in), .out(tmp) );
filter #( .type(type / 4) ) F2 (.clk(clk), .in(tmp), .out(out) );

endmodule

module top;
genvar i;
generate for (i = 0; i < 16; i = i+1) begin:list

filter2 #( .type(i) ) F ();
end endgenerate

endmodule
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InterSynth is a generic tool for creating interconnects using the procedure described
in this work. It is implemented in C++ and released as an Open Source project at
http://www.clifford.at/intersynth/. The scripts used to run the experiments in
Sec. 1.6 are included.

Yosys is a generic versatile tool for digital circuit synthesis. Besides its other uses,
it can be used as Verilog-frontend for InterSynth as well as for circuit analysis in the
pre-silicon and design phase. Is is also released as an Open Source project at http:
//github.com/cliffordwolf/yosys.
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